
Mining information from social media during crisis events

Raphaël Pinault [21801579], Camille Pousse [22200255] et Cindy Puech [21804198]

Abstract

This project explores the application of machine learning techniques to extract insights from so-

cial media data during crisis events, focusing on real-time information from platforms like Twitter.

Through detailed analysis and modeling, we address challenges such as data imbalance and fea-

ture selection. Despite notable achievements, the study highlights the need for further validation

in diverse crisis contexts and emphasizes the potential for enhanced performance with additional

optimization. This project also emphasizes the utilization of text mining techniques like TF-IDF,

embedding, and the exploitation of rich information inherent in graph networks.

1

Contents

1 Introduction 3

2 Data presentation 3

3 Definition and implementation of features 4

3.1 About the tweet . 4

3.1.1 TF IDF . 4

3.1.2 Word embedding . 5

3.2 About the user . 7

3.3 About the event . 7

3.4 About the hashtag . 7

4 Data preparation for the training of the model 8

4.1 Formating the response variable . 8

4.2 Spliting the data . 8

5 Predictive model used and the scores 9

5.1 MultiOutputClassifier . 9

5.2 Metrics . 9

5.3 The models . 10

5.3.1 Random Forest . 10

5.3.2 Histogram gradient boosting classifier (HGBC) 10

5.3.3 Ridge classifier . 10

5.3.4 First results . 10

6 Model improvement 11

6.1 Data imbalance . 11

6.2 Feature selection . 11

6.3 Hyperparameter optimisation and results . 12

7 Conclusion and limits of our project 13

8 Annexe 15

2

1 Introduction

In recent years, the proliferation of social media platforms has transformed the landscape of in-

formation dissemination, particularly during crisis events. With the advent of platforms like Twitter,

real-time updates from affected individuals have become readily accessible, providing invaluable in-

sights for emergency response teams. In this project, we delve into the real of crisis informatics,

leveraging machine learning techniques to harness the wealth of information embedded within Twitter

posts during various crisis events.

The dataset under study comprises real-world Twitter posts collected during a spectrum of crisis

events, ranging from floods and fires to tornadoes and earthquakes. This rich dataset has been provided

by the organizers of the NIST TREC Incident Stream Initiative [odlNTIS20], an endeavor aimed at

catalyzing research in automatically processing social media data during emergencies. At its core, the

primary objective of this initiative is to facilitate the categorization of information and help requests

from citizens, thereby aiding emergency operators in swiftly and efficiently coordinating response

efforts.

We present the comprehensive workflow, encompassing all stages from data ingestion and prepro-

cessing to label predictions. By offering a holistic view of the entire process, we aim to provide insights

into the efficacy and feasibility of employing such methodologies in real-world scenarios.

2 Data presentation

The dataset encompasses real-world Twitter posts amassed during a diverse array of crisis events,

including floods, fires, tornadoes, and earthquakes. This valuable dataset has been made available

by the organizers of the NIST TREC Incident Stream Initiative [odlNTIS20], with the objective of

fostering research in the automated processing of social media data during emergency situations.

Central to this initiative is the imperative to classify information and aid requests from citizens,

thereby facilitating response coordination by emergency operators.

Presented as a directed multi-graph structure, the dataset comprises a total of 109,627 nodes,

delineated as follows:

• 43,141 User Nodes: Representing individual users

• 55,986 Tweet Nodes: Capturing individual Twitter posts during crisis events

• 34 Event Nodes: Signifying specific crisis events

• 10,441 Hashtag Nodes: Denoting hashtags associated with tweets

• 25 Category Nodes: the categories used for classifying information and aid requests

Of particular significance is the presence of edges linking these nodes. Notably, the dataset features

a diverse array of edge types, including:

• has hashtag: Establishing connections between tweets and associated hashtags,

• has category: Linking tweets to one of the 25 predefined categories,

• reply to: Facilitating interactions between tweets and users.

Despite the richness of the dataset, not all information will be utilized in the scope of this project.

Nonetheless, we will provide detailed insights into the components that we think are pertinent for our

analysis and model.

3

3 Definition and implementation of features

Initially, we choose the variables that appear relevant for analysis with the aim of predicting the

category of a tweet. In this section we will explore 4 categories of features: about the tweet, more

precisely about the content of the tweet, about the user, about the Event and finally about the hashtag.

3.1 About the tweet

Firstly, regarding the tweet, we retain the full text of the tweet, which we will subsequently analyze,

along with the tweet’s topic and its number of retweets to gauge its popularity.

Regarding the full text of the tweet, we start by cleaning the text, separating the raw text from

the hashtags that beggins with a ”#” symbol, links such as those starting with ”https,” and mentions

that appear with an ”@” symbol. Next, we identify the important words through a series of operations

describ as following :

• initially, we tokenize the tweet, meaning we split the sentence into words,

• we convert everything to lowercase

• we remove punctuation that doesn’t provide information

• we eliminate non-alphabetic terms

• we discard words with fewer than 3 letters

• we lemmatize, meaning we retain only the root form of words; and finally, we remove stop words,

which are commonly used words in the language that carry little or no information.

Figure 1: Dataframe with a view on the original and clean tweets

From these more simplified tweets, we then apply two distinct methods of text mining : TF-IDF

and word embedding, which we will present thereafter.

3.1.1 TF IDF

Firstly, we apply a TF IDF vectorizer on the important words we have selected using the TfidfVec-

torizer function presented below.

4

vectorizer = TfidfVectorizer(max_df =0.5, min_df=2, max_features =200, stop_words=’

english ’)

The max df option filters out words that appear in more than 50% of documents to select only

relevant words. The min df option, set to 2, filters out words appearing in fewer than 2 documents,

while max features = 200 specifies the desired number of selected words. Here we retained the 200

most important words from the whole tweet network. Lastly, stop words = ’english’ filters out English

stop words.

Figure 2: View on the TF IDF of the 200 selected words

3.1.2 Word embedding

Furthermore, as a subsequent step, we establish a word embedding method, which involves repre-

senting the tweet as a vector. For this purpose, we utilize the Word2Vec function, which enables us to

obtain a numerical vector for each word present just below.

word2vec_model = Word2Vec(sentences=tokenized_text , vector_size =100, window=5,

min_count=1, workers =16)

We specify several options, where we limit the size of the vector to 150. The ”window” parameter

indicates that for each word, the model considers words within a window of 5 words on each side.

Finally, the ”min count” parameter set to 1 indicates that we are interested in words that appear at

least once in the tweet, meaning all words in the tweet. This function allows us to obtain a vector

of dimension 150 for each word present in the tweet. The tweet is nothing more than the sum of the

vectorial representation of the word composing the tweet. To leverage this very rich information, we

propose the following workflow :

• For each of the 25 category, we compute the vectorial representation of this category by computing

the average vector of all the tweets belonging to this category.

• We then compute for each tweet the cosine similary with these category representant vector.

• Finally we obtain 25 new variables.

We compute the centrality score for each tweet node as well. We use 3 different centrality measures

: closeness centrality, degree centrality and eigenvector centrality.

5

Figure 3: View on the vectorial representation of the tweets

Figure 4: View on the similarity score between the tweets and the categories

Figure 5: View on the centrality measures for each node

6

3.2 About the user

We decided to keep the attributes ’follower count’ and ’isVerified’ of the User nodes, as it allows us

to determine whether the tweeting user is a more influential person or not. For instance, the number of

followers can indicate the reach and influence of a user’s tweets, which may be critical for the filter of

information during a crisis. Additionally, verified accounts might be considered more credible sources

of information, which could impact how their tweets are perceived and utilized in emergency response

efforts.

3.3 About the event

Regarding the event discussed in a tweet, we kept the event name (attribute ’id’) as well as the event

type (’eventType’). Indeed, we hypothesize that the ’eventType’ variable provides context regarding

the nature of the event, enabling better categorization and analysis of tweets based on the type of

event.

fireColorado2012 costaRicaEarthquake2012 floodColorado2013

typhoonPablo2012 laAirportShooting2013 westTexasExplosion2013

guatemalaEarthquake2012 italyEarthquakes2012 philipinnesFloods2012

albertaFloods2013 australiaBushfire2013 bostonBombings2013

manilaFloods2013 queenslandFloods2013 typhoonYolanda2013

joplinTornado2011 chileEarthquake2014 typhoonHagupit2014

nepalEarthquake2015 flSchoolShooting2018 parisAttacks2015

floodChoco2019 earthquakeCalifornia2014 earthquakeBohol2013

hurricaneFlorence2018 shootingDallas2017 fireYMM2016

albertaWildfires2019 cycloneKenneth2019 southAfricaFloods2019

philippinesEarthquake2019 coloradoStemShooting2019 sandiegoSynagogueShooting2019

Table 1: Exemple de EventType

3.4 About the hashtag

The hashtags undergo a comparable treatment to the tweets: following formatting into word lists,

we calculate cosine similarity with each category’s representative vector, mirroring the process used for

tweets. Separately computing these similarities adds depth to our analysis, potentially yielding richer

insights. This step contributes an additional 25 features to our dataset, further enhancing the scope

of information available for analysis.

7

Figure 6: View on the similarity score between the hashtags in a tweet and the categories

4 Data preparation for the training of the model

4.1 Formating the response variable

A single tweet may belong to multiple classes, implying that the response variable contains as many

dimensions as there are categories in the project? 25 in this instance. This response variable essentially

forms a vector, and precise coding is crucial to ensure compatibility with the multiclassprediction

function. It should be noted that it’s represented as a 2D array object.

Figure 7: View on formating of the tweets response variable before turning it into a 2D array object

4.2 Spliting the data

We have opted to partition our dataset into a 30% test set and a 70% training set. This decision aims

to mitigate overfitting, a phenomenon where a machine learning model memorizes the training data

rather than learning the underlying patterns and relationships. Overfitting leads to high performance

on the training data but poor performance on new, unseen data. By splitting the dataset into training

and test sets, we can assess the model’s performance on unseen data, thus preventing overfitting. A

successful performance on the test set indicates that the model has learned to generalize and can make

accurate predictions on new data. Conversely, if the model performs poorly on the test set compared

to the training set, it suggests overfitting, necessitating adjustments such as regularization techniques

or reducing model complexity to enhance generalization.

8

Moreover, we took meticulous measures to prevent any potential data leakage between the training

and testing datasets. Given that the response variable of tweets indicates all possible categories they

may belong to, it’s crucial to avoid overlap between the two datasets. If a tweet from the test dataset

were also present in the training dataset, it could inadvertently grant the model access to its response

variable during training, undermining the integrity of the evaluation process. Considering that some

tweets can be associated with up to 6 or 7 categories, alongside the duplication of certain tweets to

address the imbalance issue mentioned earlier, dividing the datasets based on row numbers (index in

dataframe) would greatly increase the likelihood of overlap.

To address this concern, during the splitting phase, we use the node ID assigned to each tweet

rather than simply dividing based on index numbers. This ensured that no tweet appeared in both

the training and test databases, maintaining the integrity and independence of the datasets for robust

model evaluation.

5 Predictive model used and the scores

We will employ three distinct machine learning algorithms for making predictions. Although delving

into their principles is beyond the scope of this project, we will briefly outline their methodologies.

To assess the performance of each model and compare them, we will compute performance metrics

presented just below.

5.1 MultiOutputClassifier

We utilize the MultiOutputClassifier function to fit a classifier for each target. This serves as a

straightforward approach to expand classifiers that lack native support for multi-target classification.

The desired classifier is specified as a parameter of the MultiOutputClassifier function. When combined

with the classification algorithm, this function effectively functions as a multi-class classifier algorithm.

5.2 Metrics

To evaluate our models, we use two metrics: the F1 score and Cohen’s Kappa measure.

The F1 score is a measure of a classification model’s precision. It takes into account both precision

(the classifier’s ability to not mislabel a negative observation as positive) and recall (the classifier’s

ability to find all positive observations).It is derived as follows:

F1 =
2× precision× recall

precision + recall

Where precision is the ratio of true positives to all observations predicted as positive and recall is the

ratio of true positives to all actual positive observations. The closer the F1 score is to 1, the better

the model’s performance in terms of precision and recall.

Cohen’s Kappa score measures agreement between two raters. In the context of classification, it

assesses agreement between the labels predicted by the model and the actual labels, while accounting

for the possibility of agreement by chance. It is derived as follows:

κ =
po − pe
1− pe

Where:p0 is the observed proportion of agreement between the two raters and pe is the expected

proportion of agreement if the raters were to randomly assign labels. In this formula, p0 is computed

as the ratio of the number of agreements to the total number of observations, and pe is calculated as

the product of the proportions of items labeled by each rater. A score of 1 indicates perfect agreement,

9

0 indicates agreement by chance, and -1 indicates complete disagreement. This measure is particularly

interesting in this context of multi-label classification.

5.3 The models

5.3.1 Random Forest

Random Forest is an ensemble learning technique employed for classification and regression pur-

poses. It builds numerous decision trees during training and outputs the class (for classification)

predicted by each tree. Each tree is trained on a subset of the training data and makes indepen-

dent predictions. By averaging or voting these predictions, Random Forest mitigates overfitting and

enhances generalization compared to individual trees. Its robustness and capability to handle high-

dimensional datasets make it particularly compelling for various applications.

5.3.2 Histogram gradient boosting classifier (HGBC)

HistGradientBoostingClassifier is a machine learning algorithm that can be used both for classi-

fication and regression tasks. It belongs to the gradient boosting family and utilizes a histogram-

based technique for optimizing the model’s performance. HistGradientBoostingClassifier handles large

datasets by binning features into histograms, reducing computational overhead. The algorithm dis-

cretizes the continuous features into bins or intervals. Each feature’s range is divided into bins, and

the algorithm counts the occurrences of feature values within each bin. These counts are then used

to construct histograms for each feature. The predictive model is built in a sequential manner by

iteratively minimizing the loss function.

5.3.3 Ridge classifier

The Ridge Classifier incorporates L2 regularization to address multicollinearity (when independent

variables are highly correlated) and overfitting in linear regression-based classification tasks. The L2

regularization adds a penalty term to the regression equation’s cost function, which is proportional to

the square of the coefficients’ magnitude. By introducing this penalty term, the Ridge Classifier effec-

tively controls the complexity of the model by favoring simpler models with smaller coefficient values.

This preference results in improved generalization performance on unseen data. This regularization

technique effectively shrinks the coefficients towards zero, reducing the model’s sensitivity to noise and

multicollinearity while enhancing its ability to generalize well to new data.

5.3.4 First results

These first results are obtained from the original test dataset.

Model Precision Recall F1 Score Cohen Kappa Score

Random Forest 0.775 0.460 0.533 0.274

HGBC 0.748 0.560 0.615 0.348

Ridge 0.684 0.424 0.475 0.209

Table 2: Performance Metrics of Different Models

Based on these initial findings, it appears that the HistGradientBoostingClassifier (HGBC) per-

forms the best, exhibiting the highest Cohen’s Kappa and F1 scores among the three models tested.

10

6 Model improvement

In this section, we will elucidate the methods employed to enhance the performance of our models,

and then the updated results following the implementation of these methodologies.

6.1 Data imbalance

Among the 55,986 tweets in the database, we observe 36,611 tweets associated with at least one of

the 25 categories. This reveals a significant class imbalance within the database: the most prevalent

class comprises over 10,000 tweets, whereas the smallest class contains nearly 200 tweets. Such a skewed

distribution implies that our model will primarily learn from the more dominant classes, potentially

overlooking the underrepresented ones. In fact, data imbalance can significantly affect performance

metrics such as the F1 score and Cohen’s Kappa measure. When classes are unevenly distributed, these

metrics may be biased towards the majority class, resulting in inflated scores for dominant classes and

lower scores for minority classes.

To address this imbalance, we opt to resample the database, a popular practiced in this field.

Specifically, we will upsample the smaller classes by duplicating their instances. Ultimately, we con-

struct a new training database where each class represents at least 3% of the dataset. We recognize

that this distribution does not accurately reflect real-world proportions. However, our main objective

is to construct an optimal training dataset for the model, with the aim of enhancing our F1 and Kappa

scores.

6.2 Feature selection

The classifier method allows us to see which features have been used the most on average. Since we

have a high number of features, we will retain only the ones that have been used a lot, thus indicating

they have strong discriminant power to distinguish between classes. The Random Forest Classifier

method allows us to have a look at the importance of each feature, so we select the most important

variables to be used using the ’feature importances ’ attribute of the model which cannot be utilized

for the other two models.

For each of the 25 categories, a classifier model is fitted. For each of these 25 classifier instances,

we can retrieve the importance score of each variable. The overall feature importance is obtained by

computing the mean of these importance scores across the 25 categories.

Number_of_var = 100

feat_impts = []

for clf in randomforest_model1.estimators_:

feat_impts.append(clf.feature_importances_)

feature_importance = np.mean(feat_impts , axis =0)

x = np.argsort(feature_importance)[:: -1][: Number_of_var]

features = X_train.columns

selected_features = list(features[x])

We decided to retain the 100 most important variable identified by the Random Forest Classifier,

listed in descending order of importance in the appendix.

11

Number of Variables Precision Recall F1 Score Cohen Kappa Score

50 0.4771 0.2496 0.3241 0.1036

100 0.7607 0.4792 0.5600 0.2988

150 0.4899 0.2521 0.3286 0.1086

257 0.6897 0.4942 0.5366 0.2568

Table 3: Performance Metrics for Different Numbers of Variables

6.3 Hyperparameter optimisation and results

In this section, we focused on the model that exhibited the best performance, namely the Hist-

GradientBoostingClassifier. Our goal was to enhance its performance by tuning its hyperparameters.

Initially, we considered using GridSearchCV to explore different hyperparameter combinations and

identify the optimal configuration. However, we quickly realized that this approach was too costly

in terms of computation time. The GridSearchCV process never concluded due to time constraints

(sometimes after 10 hours without any result), prompting us to switch to an alternative approach with

RandomizedSearchCV, limiting the number of iterations to make the process more efficient.

Unfortunately, despite our efforts, the results obtained with this new model did not surpass those

of the baseline model. Several factors may explain this limitation. Firstly, the random nature of

RandomizedSearchCV may not always effectively explore the hyperparameter space. Additionally, the

constraint on the number of iterations may limit the ability to find optimal combinations. Moreover,

there is an inherent risk of overfitting when evaluating optimal parameters, which can lead to poor per-

formance on test data. Lastly, the complex interactions between hyperparameters can make selecting

an optimal combination challenging.

In conclusion, although hyperparameter tuning is essential for optimizing model performance, our

attempt with RandomizedSearchCV did not lead to significant improvements compared to the baseline

model. Below, the results for the hyperparameters found :

Model Hyperparameters

HGBC ’estimator max depth’: 20

’estimator max leaf nodes’ : 100

’estimator max iter’ : 500

’estimator learning rate’ : 0.09

’estimator l2 regularization’ : 3.755

Table 4: Hyperparameters of HXGBoost model

Below, the results obtained after enhancing the model. It is observed that overall, the metrics of

the second results are close to those of the first; however, they exhibit lower performance.

Model Precision Recall F1 Score Cohen Kappa Score

HGBC 0.725 0.556 0.608 0.349

Table 5: Performance metrics of updated HXGBoost model

12

7 Conclusion and limits of our project

In this project, we aimed to explore the potential of machine learning techniques in extracting

valuable insights from social media data during crisis events. Our endeavor demonstrated a detailed

application of effective methods for categorizing and analyzing this data to support emergency response

efforts, leveraging real-time information available on online social platforms like Twitter during emer-

gencies. Additionally, the project shed light on the rich content of text data through the utilization

of text mining techniques such as TF-IDF, as well as the wealth of information derived from network

graphs such as those found on Twitter.

We traversed through various stages of data processing, feature extraction, model training, and

evaluation. Beginning with the presentation of the dataset provided by the NIST TREC Incident

Stream Initiative, which comprised a diverse array of Twitter posts associated with different crisis

events, our analysis encompassed not only the textual content of tweets but also user attributes, event

details, and hashtag usage, providing a holistic view of the information landscape during crises.

For predictive modeling, we experimented with three machine learning algorithms: Random Forest,

Histogram Gradient Boosting Classifier (HGBC), and Ridge classifier. Through rigorous evaluation

using performance metrics such as F1 score and Cohen’s Kappa score, we iteratively refined our

models, addressing challenges such as class imbalance, feature selection, and engineering. The HGBC

model yielded the best performances. However, despite our attempts to enhance its performance using

GridSearchCV or RandomizedSearchCV, computational times prevented significant improvements.

However, our project is not without limitations. While our models achieved commendable perfor-

mance on the provided dataset, their efficacy in diverse and dynamic crisis situations remains to be

validated. Furthermore, the interpretability of our models and the generalizability of our findings to

different contexts warrant further investigation. Given more time for fine-tuning the model and access

to more powerful machines, this project holds even greater potential.

In conclusion, our project highlights the immense potential of machine learning in extracting

valuable information from social media during crisis events. By leveraging advanced algorithms and

methodologies, we can empower emergency responders with timely and actionable insights, ultimately

contributing to more efficient and effective crisis management strategies.

13

References

[odlNTIS20] Les organisateurs de l’initiative NIST TREC Incident Stream. Description de l’initiative

nist trec incident stream 2020, 2020.

14

8 Annexe

Category Number of tweets

Hashtags 10605

News 10355

Sentiment 9912

MultimediaShare 9391

Irrelevant 7563

Location 7087

Factoid 6838

ThirdPartyObservation 6196

FirstPartyObservation 4894

Discussion 3864

OriginalEvent 3371

Weather 3109

EmergingThreats 2460

Advice 2253

ContextualInformation 2102

Official 1638

ServiceAvailable 1564

Donations 952

NewSubEvent 868

MovePeople 387

InformationWanted 281

SearchAndRescue 261

CleanUp 219

Volunteer 210

GoodsServices 186

Table 6: Number of tweets per category

15

Feature Description

degree centrality Degree centrality of nodes

topic encoded Encoded topic

sim 559 Similarity score 559

sim 569 Similarity score 569

sim 561 Similarity score 561

sim 572 Similarity score 572

sim 558 Similarity score 558

sim 575 Similarity score 575

sim 577 Similarity score 577

EventPlace encoded Encoded event place

sim 580 Similarity score 580

sim 564 Similarity score 564

sim 560 Similarity score 560

sim 578 Similarity score 578

sim 562 Similarity score 562

sim 574 Similarity score 574

sim 579 Similarity score 579

sim 567 Similarity score 567

sim 573 Similarity score 573

sim 576 Similarity score 576

sim 557 Similarity score 557

sim 581 Similarity score 581

sim 571 Similarity score 571

sim 566 Similarity score 566

sim 565 Similarity score 565

sim 570 Similarity score 570

sim 563 Similarity score 563

sim 568 Similarity score 568

event type encoded Encoded event type

retweet count Number of retweets

closeness centrality Closeness centrality of nodes

rescueph Presence of ’rescueph’ keyword

mozambique Presence of ’mozambique’ keyword

n562 # Frequency of hashtag ’n562’

wildfire Presence of ’wildfire’ keyword

n561 # Frequency of hashtag ’n561’

n559 # Frequency of hashtag ’n559’

Table 7: Feature importance (1)

16

Feature Description

n576 # Frequency of hashtag ’n576’

n558 # Frequency of hashtag ’n558’

n577 # Frequency of hashtag ’n577’

n567 # Frequency of hashtag ’n567’

n569 # Frequency of hashtag ’n569’

help Presence of ’help’ keyword

n564 # Frequency of hashtag ’n564’

need Presence of ’need’ keyword

abfire Presence of ’abfire’ keyword

n580 # Frequency of hashtag ’n580’

n574 # Frequency of hashtag ’n574’

n575 # Frequency of hashtag ’n575’

n573 # Frequency of hashtag ’n573’

n572 # Frequency of hashtag ’n572’

n557 # Frequency of hashtag ’n557’

n563 # Frequency of hashtag ’n563’

n560 # Frequency of hashtag ’n560’

n578 # Frequency of hashtag ’n578’

cyclone Presence of ’cyclone’ keyword

n571 # Frequency of hashtag ’n571’

n568 # Frequency of hashtag ’n568’

ha Presence of ’ha’ keyword

n565 # Frequency of hashtag ’n565’

n570 # Frequency of hashtag ’n570’

n581 # Frequency of hashtag ’n581’

n579 # Frequency of hashtag ’n579’

ymmfire Presence of ’ymmfire’ keyword

n566 # Frequency of hashtag ’n566’

evacuation Presence of ’evacuation’ keyword

people Presence of ’people’ keyword

high Presence of ’high’ keyword

cyclonekenneth Presence of ’cyclonekenneth’ keyword

alberta Presence of ’alberta’ keyword

level Presence of ’level’ keyword

donate Presence of ’donate’ keyword

earthquake Presence of ’earthquake’ keyword

shooting Presence of ’shooting’ keyword

flood Presence of ’flood’ keyword

Table 8: Feature importance (2)

17

Feature Description

affected Presence of ’affected’ keyword

school Presence of ’school’ keyword

emergency Presence of ’emergency’ keyword

kenneth Presence of ’kenneth’ keyword

philippine Presence of ’philippine’ keyword

florida Presence of ’florida’ keyword

nepal Presence of ’nepal’ keyword

lake Presence of ’lake’ keyword

amp Presence of ’amp’ keyword

area Presence of ’area’ keyword

water Presence of ’water’ keyword

home Presence of ’home’ keyword

power Presence of ’power’ keyword

flooding Presence of ’flooding’ keyword

update Presence of ’update’ keyword

resident Presence of ’resident’ keyword

hit Presence of ’hit’ keyword

synagogue Presence of ’synagogue’ keyword

say Presence of ’say’ keyword

relief Presence of ’relief’ keyword

wa Presence of ’wa’ keyword

news Presence of ’news’ keyword

safe Presence of ’safe’ keyword

typhoon Presence of ’typhoon’ keyword

ymm Presence of ’ymm’ keyword

Table 9: Feature importance (3)

18

	Introduction
	Data presentation
	Definition and implementation of features
	About the tweet
	TF IDF
	Word embedding

	About the user
	About the event
	About the hashtag

	Data preparation for the training of the model
	Formating the response variable
	Spliting the data

	Predictive model used and the scores
	MultiOutputClassifier
	Metrics
	The models
	Random Forest
	Histogram gradient boosting classifier (HGBC)
	Ridge classifier
	First results

	Model improvement
	Data imbalance
	Feature selection
	Hyperparameter optimisation and results

	Conclusion and limits of our project
	Annexe

