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1 Introduction

The use of wind energy can be seen as far back as 3000 years. Before the Industrial Revolution,

wind energy was primarily harnessed through the use of windmills which directly converted wind into

mechanical rotational energy. With the Industrial Revolution came the widespread use of coal and

other fossil fuels that largely replaced wind energy as fossil fuels provided a more constant, reliable,

and greater source of energy.

Despite the greatness of fossil fuels, they have a large negative environmental impact, particularly

through atmospheric carbon emissions which lead to global warming. Therefore, over the past couple

of decades, following the Kyoto Protocol (Japan, 1997), governments and social movements have been

trying to reverse the trend by intensifying the use of renewable energies.

With the creation of generators, wind energy has emerged as one of the most promising technologies

to address global challenges related to sustainable energy supply, greenhouse gas emissions reduction,

and the transition to renewable energy sources. Indeed, wind turbines use an inexhaustible resource:

the wind.

However, wind turbines are a very controversial topic due to their visual and sound impact. In addi-

tion, for this energy conversion to be truly effective, it is necessary to engage in thorough consideration

and optimize the positioning of wind turbines across the French territory.

The major challenge lies in the need to increase the share of energy produced by wind turbines to

meet the constantly growing energy demand of our modern societies. But, the equation is complex due

to a crucial peculiarity of energy generated from renewable sources, such as wind turbines: it cannot

be stored or sent far from the production source. Therefore, it is essential to achieve a distribution

that ensures maximization of energy production while minimizing the storage and movement of this

production. Moreover, this complex approach must take into account a multitude of factors, including

the consideration of residential areas.

The objective of this project is to give an overview of the history of wind turbines in France and

after to find potential locations for future wind turbine installations in France. To do so, we will first

provide a historical overview of wind turbines in France. Then, we will delve into an analysis of both

power capacity and generation from these turbines. And finally, we will determine the most promising

sites by first predicting the potential energy generated by the wind farm based on its location, and then

by narrow it down to locations close enough to urban areas to avoid electrical energy losses associated

with transportation.
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2 Contributions

René Fury and Daniel Joly (1995) [6] highlighted in their work that in general climate data is not

fully exploited for various reasons. Firstly, the spatial resolution of available data is often limited,

typically around 1 kilometer at best. This means that specific details at smaller scales may be lost,

limiting the accuracy of analysis. Additionally, the temporal scale used for this data, often annual

or monthly averages, may not be suitable for certain analytical needs, particularly for applications

requiring finer resolution on a daily scale. In our paper, scales for extrapolation can be chosen, as

small as you want, and we use daily data.

In their paper, S. Rehman, M. A. Baseer, and L. M. Alhems [12] made a computer tool to help pick

the best places for wind farms in Saudi Arabia where wind power could be profitable. To achieve this,

they gathered historical wind speed data from 46 locations across Saudi Arabia spanning 40 years.

Using spatial interpolation techniques, they estimated wind speeds at locations where direct data was

not available, creating a comprehensive wind map of the country.

We used a comparable approach in our study. What sets our research apart is that our model

directly predicts the real value of wind speed, whereas their method involves reclassifying interpolated

wind data into 9 categories. Additionally, while they focused on Saudi Arabia, our study is conducted

using data from France.

A more recent study by Naveen Goutham, Bastien Alonzo, Aurore Dupré, Riwal Plougonven,

Rebeca Doctors, Lishan Liao, Mathilde Mougeot, Aurélie Fischer, and Philippe Drobinski [11] also

applies Machine Learning methods to predict wind speed. This paper is based on eight years of wind

speed measurements from 2010 to 2017 collected from 171 stations across mainland France and Corsica.

Their models rely on 25 explanatory variables, including the atmospheric state at the station

locations. Their most effective models are random forest and gradient boosting, achieving a mean

square error (MSE) of 0.94 m/s.

Comparing with this existing literature, our XGBoost model achieves a slightly lower MSE of 0.90

m/s with fewer explanatory variables, but the methodology appears quite similar. This underscores

the effectiveness of machine learning models, particularly XGBoost, in improving the accuracy of wind

speed prediction in France. These findings contribute to optimizing the utilization of wind resources

and decision-making in the renewable energy sector.

To conclude, an innovative approach that our paper proposes is the use of a machine learning

model that require very little information to produce accurate predictions, making it an efficient and

cost-effective solution for climate analysis and forecasting.
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Finally, in contrast to many previous studies that often focus on a specific region of France or on the

positioning of wind turbines at given locations, our paper takes a more holistic approach by identifying

optimal locations at a national scale. This broader approach allows for a more comprehensive overview

of deployment possibilities, which can lead to more informed decisions and more efficient utilization of

wind resources at a country-wide level.

3 Wind Turbine Operation

Before delving into the analytical and predictive part of our study, let’s have a general understanding

of how wind turbine work. To understand the functioning of wind turbines, it is essential to delve into

the process of converting the kinetic energy of the wind into electrical energy.

The core of wind turbine operation lies in harnessing the energy produced by the wind. The blades

of the turbines, whose shape and inclination are designed to capture the kinetic energy of the wind

most efficiently, are positioned at the top of a tower. When the wind blows on the blades, it exerts a

force on them, causing them to rotate. This rotational movement is transmitted to a rotor located at

the top of the tower.

The rotor is connected to a generator. As it turns, it rotates a copper coil in a magnetic field,

generating an electric current. This current is then transmitted by cables from the turbine nacelle to

a transformer located at the base of the tower, where the electrical voltage is adjusted to integrate it

into the electrical grid.

Figure 1: Operation of a wind turbine [14]

Wind, as a primary resource, plays a crucial role in the efficiency and profitability of these in-

stallations. Therefore, the first major consideration regarding the selection of sites for wind turbine
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installation is wind speed. Regions exposed to strong and consistent winds are preferred because higher

wind speeds allow turbines to generate more energy. An essential aspect of the analysis is the diversity

of winds throughout the year. Some locations may have a high average wind speed, but it is crucial

that this speed remains constant to ensure a more reliable operation of the turbines.

To sum up, careful planning and a thorough understanding of wind characteristics in a given region

are essential to maximize sustainable and efficient wind electricity production.

4 Overview of Wind Turbines in France

4.1 Historical Overview of Wind Turbines in France

The history of wind energy in France started with the introduction of the Darrieus turbine. The

Darrieus turbine is a vertical-axis wind turbine, conceived by French inventor George Darrieus in 1931.

Since then, a total of 20 916 MW (as date of December 31, 2022) of wind power capacity have been

installed in France.

By the end of 2015, the total onshore installed capacity of 10,358 MW consisted of 5,956 turbines.

According to figures released by the French government, there were nearly 2,000 wind farm installations

across France by the end of 2019. While France has been a relatively late developer in wind power

compared to other European countries, it has set the target of more than doubling onshore wind power

capacity from 2015 levels by 2023. In February 2022, President Emmanuel Macron declared France’s

commitment to constructing 50 offshore wind farms, aiming for a cumulative capacity of at least 40

GW by 2050.

Additionally, the existing framework supporting renewable energy sources in France is based on

Law No. 2015-992 dated 17 August 2015, titled "On Energy Transition for Green Growth". This

legislation sets ambitious national energy goals. The PPE (Pluriannual Energy Program), updated by

Decree No. 2020-456 on 21 April 2020, serves as a strategic roadmap for the French Government’s

energy initiatives over the next ten years. The primary objective is to guide France towards becoming

a carbon-neutral nation by 2050. In 2023, according to the Ministère de la Transition Ecologique,

renewable energies account for 20.7% of gross final energy consumption, and among renewable energies,

wind power accounts for 11%.

4.2 Analysis of Wind Turbines in France

4.2.1 Wind Turbine Capacity

Data
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Our data set contains all the terrestrial wind turbines in France, active or ordered. This data set is

publicly available on a government website, Géorisques.gouv. The data set contains 11759 observations.

We only kept the active windmills, which represent 7292 observations. There are in total 24 variables:

Variable Description

id_aerogenerateur Unique identifier for the wind turbine
id_parc Unique identifier for the wind turbine park
code_insee Code for the commune
nom_commune Name of the commune
code_dept Code for the department
code_reg Code for the region
puissance Power of the wind turbine
hauteur_totale Total height of the wind turbine
hauteur_mat_nacelle Height from base to nacelle
diametre_rotor Rotor diameter
cote_ngf Altitude above sea level
periode_allumage_lib Lighting period (free text)
periode_allumage_desc Description of the lighting period
type_feu_lib Type of lighting (free text)
type_feu_desc Description of the lighting type
date_mise_en_service Date of commissioning
constructeur Manufacturer of the wind turbine
reference_modele Model reference
x_aerogenerateur X-coordinate of the wind turbine
y_aerogenerateur Y-coordinate of the wind turbine
epsg EPSG code
libelle Label
date_maj Last update date
nom_eolienne Name of the wind turbine

Table 1: Variables of the dataset on terrestrial wind turbines in France

We created four additional variables: année (the year the windmill was built), latitude, and longitude

(the GPS coordinates), and Région (the region where the windmill is located).

Some observations required rectification as they had a power of 80MW, which seemed unusually

high. In such cases, we conducted cross-referencing with other observations to obtain the correct

values. To achieve this, we compared these suspicious windmills to others of the same model. If the

model had only one power value in the data set, we assigned this value to the windmill. If there were

multiple values, we first checked if there was another windmill of the same model from the same park.

In such cases, we assigned the power value of the identified windmill to our suspicious windmill. If

no such windmill was found, we examined windmills with similar characteristics (such as height, rotor

diameter, and nacelle height) of the same model.
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A few interesting graphs

Figure 2: Installed wind power capacity by region and year

Figure 3: Cumulative installed wind power capacity by region

We can see that most of the regions have linear trends apart from "Haut-de-France" which has

more of an exponential trend.
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Figure 4: Map of the different wind farms in France

4.2.2 Wind Power Generation

Data

We use a data set from ODRÉ (OpenData Réseaux-Energies) for this section. This data set

contains regional data from January 2013 from the éCO2mix application. éCO2mix is an easy-to-

use tool created by RTE to help consumers better understand and consume electricity. It provides

all electricity consumption and production indicators in real-time, 24 hours a day, at a national and

regional level. Among other electricity production methods, it contains the level of energy production

by wind turbines every 30 minutes by region.

Data cleaning

First, we deleted the columns that don’t relate to wind turbines. After, we converted the ’Date’

variable to a DateTime variable, and created three new columns with the month, the year, and the

month and year that will be helpful in the future analysis. Finally, we deleted the 108 observations

with missing values since we have 1 980 288 observations. The final variables of this data set are thus:
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Variable Description

Code INSEE région Code for the commune
Région Name of the region
Date Energy production date
Heure Energy production hour
Date - Heure Energy production date and hour
Eolien (MW) Energy production
Year Energy production year
Month Energy production month
month_year Energy production year and month

Table 2: Variables of the data set on wind energy production in France

Data Analysis

First, let us have a look at the energy production of the different wind parks per region.

Figure 5: Distribution of the wind power production by region

We notice that overall, wind power generation follows a power law in each region. This means that

the majority of observations are low production values, while high production values are rare. This

could be due to various factors, such as the variability of weather conditions (e.g. wind speed and

direction) that affect wind power generation. In addition, wind power generation capacity may vary

according to the technology and infrastructure available in each region.

Then, we looked at the average production per day, month, and year for each region.
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Figure 6: Evolution of the wind power production by region

We notice that it is a little hard to see all the regions on the same graph. However, we still notice

that there is a kind of cyclicity that depends on the months of the year. This can also be seen in the

following graph when we do not distinguish between regions.

Figure 7: Evolution of the wind power production

To better visualize the cyclicity, and to take into account the difference in capacity between wind

farms and years in each region, we’re going to normalize the data. To do this, we need the capacity of

wind turbines per region and year, we used the dataset from the previous section.
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Figure 8: Evolution of the wind power production

We see that there is a cyclicity that depends on the months of the year. The production is higher

during winter and lower during summer.

5 Wind Speed Prediction

5.1 Presentation of Data and Objectives

For this section, we chose to use the database of the Historical Meteorological Observation of

France (SYNOP) [5]. This source contains meteorological and atmospheric data such as temperature,

humidity, wind force, cloud description, visibility, and others. The data was collected by 62 stations

spread across the French territory, with 42 located in metropolitan France. The period covered is from

January 2018 to December 2022, with readings taken every 10 minutes, for which we have the average

every 3 hours.

By applying physical formulas, extracted from scientific literature, detailed later in our study, to

the wind speed obtained from our database, we can calculate the electricity production that a wind

turbine could provide for each of these locations, at 3-hour intervals. By aggregating these results, we

were able to evaluate the annual wind energy production for each of these sites.

Our initial database only covered 42 locations, corresponding to the 42 meteorological stations in

metropolitan France. We chose to exclude the 2 stations located in Corsica to obtain more relevant

results. By limiting ourselves to this data, our options for wind turbine placement were restricted to

these specific 40 locations, thus excluding a part of the French territory from our study.
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Figure 9: Position of the 40 meteorological stations used

This spatial limitation requires careful consideration when extrapolating our results to the national

scale.

To realize wind speed prediction for optimizing wind turbine placements, we have worked on two

solutions. The first solution involves implementing a statistical model, Kriging, which is particularly

used in the context of spatial measurement estimation. The second solution is to develop a learning

model using SYNOP data. In both cases, the models will be capable of predicting wind speed at a

target location every day of the year, given only the GPS coordinates of the location, based on data

from the 40 SYNOP stations.

And finally, to extend the application of these models to the entire French territory, we have

adopted a grid-based approach. We divided France into squares of 10 km by 10 km, within which

we estimated wind speed. This allowed us to then select the best locations for wind turbines, taking

into account wind speed prediction, energy production calculation, and energy demand management

by municipality.

5.2 Data Processing

It is important to remark that a wind turbine starts operating only when the wind speed reaches

or exceeds 15 km/h, and it stops when the wind speed exceeds 90 km/h[3]. To ensure a more accurate

evaluation of wind farm performance, we adopted a specific approach when aggregating data per day.

Specifically, when the wind speed was not within the critical range of 15 to 90 km/h, we considered the
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wind turbine to not be moving and the data value to be zero. This strategy aims to exclude days where

the daily average wind speed could theoretically fall within the operational range of wind turbines,

yet the turbines were not operational during the day. By doing so, we obtained a more representative

daily average of days for which the wind turbines had actually contributed to electricity production.

For example, let’s imagine that the wind blew at a constant speed of 10 km/h all morning, but a

storm occurred in the afternoon with gusts exceeding 90 km/h. In this case, the wind turbines would

not have operated during the day. However, the average wind speed for that would have been around

50km/h, which falls within the speed range where a wind turbine can effectively operate.

5.3 Wind Speed Estimation: Kriging Approach

5.3.1 Theory

In the first approach, we use the Kriging approach. It is a statistical model popularized during the

second half of the 20th century, particularly used in the context of spatial measurement estimation,

notably in meteorology. This method aims to estimate atmospheric or geological data at a specific

location based on various measurements made in the surrounding areas. Popularized by Georges

Matheron, Kriging, named in honor of its creator, the geologist-statistician Danie Gerhardus Krige,

remains widely used by many professionals in various sectors. This method is particularly useful when

the measurement exhibits spatial correlation, offering the opportunity to fully leverage available spatial

data.

Notation

Let Z be the random function characterizing the phenomenon we are trying to model, namely wind

speed. We denote by p0 the point in space for which we are trying to estimate the measurements, i.e.,

the values taken by Z at this point: Z(p0). The objective is to estimate Z(p0) based on the measure-

ments made in the surrounding locations, where the different locations are denoted as p1, . . . , pN along

with the observation distances (denoted as d0,i for the distance between point p0 and pi).

Definition and Assumption

We assume the intrinsic stationarity hypothesis, meaning that the statistical structure of the time

series should remain relatively constant locally. This implies that, although the behavior of Z may

exhibit trends, cycles, or patterns when observed on a global scale (across the entire map), these

structures do not significantly change at smaller scales, i.e., locally. This assumption is key as it allows

us to draw global conclusions from our estimates at a relatively local scale. In the context of wind

estimation, this hypothesis has been confirmed by other studies [10].

Variogramme
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To determine the relationship between the spatial distance of two points and the measurements of

the evolution of the phenomenon of interest between these two points, we use a variogram. Graphically,

the variogram can be represented by a scatter plot called variographic cloud.

The variogram is a function that encapsulates and synthesizes several key pieces of information

in the study. Estimated from observations, it incorporates statistics of the observed phenomenon.

Furthermore, indirectly through distances, it reflects the spatial autocorrelation of the data. On

the x-axis, we have the spatial distance between two points in space, and on the y-axis, we have

the differences in measurements associated with these two points. Analyzing the variogram allows

us to estimate essential parameters for determining the weighting of neighboring observations when

predicting unobserved values. Several types of variograms exist in the literature. We have chosen the

spherical variogram due to its popularity and recommendations in the literature [10]. The parameters

of the variogram are estimated from neighboring observations. Variograms are fitted using the method

of maximum likelihood.

Spherical Variogram : γ(h) =


0, si h = 0

σ2
(
1.5h

a − 0.5
(
h
a

)3)
, si 0 < h ≤ a

σ2, si h > a

Figure 10: Commonly used variogram curves

Ordinary Kriging Method

The Ordinary Kriging method is based on the principle that the measurement to be estimated

at a point p0 is a weighted sum of the other retained actual measurements for the estimation:

Zko(p0) =
∑N

i=1 λiZ(pi). The weights λi must take into account the geographical distances between

the points of study. The variogram is used to adjust the weight of each observation in the estimation

according to its distance. In Ordinary Kriging, the estimation is obtained using the method of La-
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grange multipliers, by imposing the constraint that the sum of the weights must be equal to 1.

Kriging Method with Linear Regression

The Kriging method with linear regression incorporates a linear regression component to an ordi-

nary Kriging. The linear regression allows using variables that do not have spatial correlation in our

estimation. More precisely, initially, we attempted to explain the phenomenon in question using vari-

ables that are not likely to be correlated with the geography present in our study. Then, we performed

ordinary Kriging on the residuals obtained from linear regression. The Kriging part takes into account

all variables that are likely to be correlated with space. It is recommended to use regression Kriging

for this kind of study. [10].

To sum up, we can mention the summary presented by Floch (2013) [4] as follows: "Kriging provides

an unbiased estimator, of minimal variance, which is also an exact interpolation since it returns for

each known point an estimated value equal to the observed value."

5.3.2 Application

Following the recommendations of the literature, we performed estimations using the Regression

Kriging model. We used the RegressionKriging function from the pykrige.rk package. The model

trains and applies in a manner quite similar to other prediction models available in Python. In the

linear regression part, we used indicator variables representing different days, months, and years to

capture the cyclic trends of wind depending on the seasons [1]. Then, we explained the residuals, i.e.,

the part of the data not explained by the yearly seasons, using the wind speed from nearby actual

meteorological stations. For the estimation with Kriging of wind speed at a point on the grid, we chose

to retain the six closest stations.
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Figure 11: Variogram for the station at point (44.7,-0.60)

Figure 12: Estimation of wind speed for the station at point (44.7,-0.60) and its surroundings

The time required to train the model for the prediction of wind speed with grid points over a

one-year period was approximately 15 minutes. The R2 values for daily prediction varied between

0.3 and 0.5, depending on the region and the specific period selected during model training. Due to

limited computing capacity, the Kriging model was trained on a partitioned database, thus restricting

the training set to a specific time range and/or region of France. Hence, multiple R2 performance

results are obtained. For monthly prediction, R2 values ranged between 0.8 and 0.85.

We appreciated the interpretability of the model, its renown in the literature, and its ability to

distinguish the portion of the phenomenon explained by variables correlated to space from the ones

related to time. This model has been validated by numerous instances and domain specialists, thus
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reinforcing the credibility of its results. However, in our case, the accuracy and predictive power of

this model remain relatively low when focusing on daily predictions. Additionally, the model based

on monthly prediction does not address our problem statement. Therefore, we choose not to consider

it further. It would have been enriching to integrate other atmospheric data influencing wind speed,

such as humidity or temperature.

With the goal of improving our model, we planed to explore new approaches, particularly those

based on machine learning techniques, to obtain a more performant model that would offer more

precision and relevant predictions for our specific context.

5.4 Estimation of Wind Speed: Machine Learning Approach

5.4.1 Linear Regression

To predict the wind at a location in France, we conducted a linear regression where our dependent

variable is the wind speed. The explanatory variables considered include geographic variables, namely

longitude, latitude, and altitude, which can capture the geographical characteristics of a region. For

example, the proximity of oceans or mountains can have a significant impact on wind dynamics. We

also introduced temporal variables with indicators for the year, month, day, and hour of the observation

to capture seasonal and annual variability. Our model, presented below, is limited to the use of these

variables to allow its application to any GPS point in France where only latitude, longitude, and

altitude data are available.

V itesse = β0 + β1 · Longitude + β2 · Latitude + β3 · Altitude +
2022∑

i=2019

β4i · 1(Année)

+

12∑
i=2

β5i · 1(Moisi) +
31∑
i=2

β6i · 1(Jouri) +
23∑
i=1

β7i · 1(Heurei) + ϵi (1)

This linear regression, performed using the LinearRegression() function, yields negative and significant

coefficients for the altitude and longitude variables (see Annex B). This means that the higher a point

is in altitude, the weaker the wind speed. Similarly, the higher the longitude (i.e., the further east it

is), the weaker the wind speed. The coefficient associated with the latitude variable is positive and

significant, indicating that the higher the latitude (i.e., the further north it is), the stronger the wind

speed.

Furthermore, the temporal variables seem relevant in the model as the majority of coefficients

associated with the month and year indicators are significant, indicating notable seasonal and annual

variations in wind speed. Similarly, the coefficients associated with the day and hour indicators are
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mostly significant, indicating an impact of the day of the month and the time of day on wind speed.

The results of this model highlight its limited performance. The coefficient of determination is

0.102, meaning that only 10% of the variance in wind speed is explained by the independent variables.

The mean squared error is 6.18, indicating that on average, the squares of the differences between

predicted and actual values are around 6 m/s (approximately 22 km/h). As seen in the figure below,

this model does not seem to be sufficiently robust to capture the complexity of the relationships

between variables for predicting wind speed. Additionally, it is observed that no predicted wind speed

values exceed 7 m/s.

Figure 13: Comparison between the actual values and the predicted values by the linear regression

5.4.2 XGBoost

The results from the previous model being inconclusive, we proceeded with a second Machine

Learning model: the XGBoost model.

XGBoost, or "eXtreme Gradient Boosting," is a machine learning algorithm that operates by iter-

atively constructing simple predictive models, called decision trees, and combining them sequentially.

At each step, the algorithm identifies previous prediction errors and assigns increased weight to mis-

classified observations, allowing it to focus on areas of the dataset that need improvement.

With this new model, we seek to predict wind speed at a station using wind speed data from

surrounding stations, taking into account the distance between them.

The coefficient of determination, R2, obtained on the test dataset reaches a value of 0.80, which
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indicates the significant performance of this model. This value demonstrates the quality of the model’s

fit to the test data, making it a robust and reliable choice for predicting daily wind speed at the target

station. Additionally, the mean squared error is 0.90, which means that on average, the squares of the

differences between the predicted values and the actual values are around 0.90 m/s, equivalent to 4

km/h. The drawback of this model remains its interpretability. It is challenging to distinguish the role

of each variable in this model. Therefore, we cannot provide further details on the results obtained.

However, it is noted that the model tends to underestimate wind speed when it is high.

Figure 14: Comparison between the actual values and the predicted values by the XGBoost model

6 Location Selection

6.1 Extrapolation of Wind Speeds

Once our model is validated, it is necessary to estimate the wind speed at various locations in

France to determine the optimal sites. As a reminder, our goal is to estimate the wind speed at a given

location every day of the year over a one-year period. Due to our limitation in computing power and

time, continuous estimation in space is not feasible. Moreover, a study on sparsely located points on

the map could compromise the validity of our conclusions. Therefore, finding a balance is essential.

First, we created a grid covering the entire France, with a mesh resolution of 10 kilometers to

extrapolate our model to different points. We wanted the grid to cover the entire metropolitan France,

excluding Corsica. To achieve this, we calculated the length (respectively width) of France using the

two farthest points from each other in latitude (respectively longitude). The distances are expressed in

degrees (1 degree is approximately equivalent to 111 kilometers, this equivalence varies depending on
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our position on the Earth). Our goal was to make wind speed predictions at intervals of 10 kilometers

(approximately 0.136 degrees). The number of points on the width (respectively the height) of the

grid is naturally obtained by dividing the width (respectively the height) of France in degrees by the

size of the grid mesh, which is 0.136.

Figure 15: Representation of our grid

To bring our results closer to reality, we had to adapt this rectangular grid to the shape of France

by excluding points located in the sea or in neighboring countries. For this purpose, we used the sjoin

function to perform a spatial join between the points of our grid and the points within metropolitan

France, defined by a geopandas dataset. We obtained the map below.
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Figure 16: Representation of our grid limited to the borders of France

6.2 Integration of Residential Areas

After, we decided to exclude points that were located near major cities. We wanted to avoid to

have wind turbines located too close to residential areas. By doing so, we sought to minimize the noise

nuisances associated with their operation, preserve the aesthetic of the urban landscape, and comply

with local regulations that may impose minimum distances between wind turbines and inhabited areas.

Indeed, according to the Senate session of January 3, 2022, the distance between a wind turbine and

a residential home must be at least 500 meters [13].

We decided to exclude cities having a population of more than 10,000 inhabitants, concidering them

as major cities. To do so, we used a government API [7] that allowed us to retrieve information about

all French municipalities, including their GPS coordinates and population, in json format.

Since our database is limited to the position of municipalities and not individual residences, we

chose to impose a distance of 20 km between future wind turbines and municipalities with more than

10,000 inhabitants, which represents 1,042 municipalities in metropolitan France. We used the cdsit

function of the spicy library to eliminate points located within a distance of less than 20 km from

these municipalities, as showed on the map below. Finally, we obtained a database of 1892 potential

locations with their latitude and longitude.
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Figure 17: Representation of our grid with consideration of major cities

6.3 Wind Prediction

By applying the XGBoost model to the grid, we obtained a dataset containing wind speed predic-

tions for the 1892 possible locations of wind turbines (corresponding to the red points on the previous

map), for each day of the year.

We aggregated the results found by year to obtain an annual average of wind speed across different

regions of France. By visualizing these aggregated data, we can identify areas that have optimal

conditions to maximize wind energy production.
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Figure 18: Comparison of wind speed predictions from 2019 to 2022

However, it is important to note that this study requires predicting wind speed on spatial dimensions

as well as temporal dimensions. However, we found it extremely difficult to make wind speed predictions

for time horizons beyond a few days. Anticipating wind speed for the years to come would have been

complex and unreliable. Indeed, meteorology experts, such as Richard Harvey [8], agree that no

prediction can "be reliable beyond a certain threshold of time". He sets this threshold at 5 daysdue

to the "chaotic" behavior of the atmosphere. In common language, reference is often made to the

"butterfly effect", where a butterfly flapping its wings in Brazil may eventually trigger a hurricane in

the Philippines. Even slight differences can trigger a domino effect in the short or long term, influencing

the atmosphere and, consequently, the ability to make wind predictions.

To go around this difficulty, we hypothesized that wind speed will remain relatively constant in

the years to come, and we focused on the spatial dimension. This hypothesis is reinforced by the

observation that over the past four years, wind speed predictions showed some similarity from one

year to another.
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Figure 19: Prediction of wind speed in 2022

6.4 Estimation of energy produced

Now that we have quantified the available energy source, namely the energy associated with wind

speed across France, we can estimate the electrical power produced, in Watts, by a wind turbine at

these locations.

The kinetic energy of the wind, determined by its mass and velocity, is expressed by the formula

Ec = 1
2 · ρ · V 2, where ρ is the air mass. Wind turbines exploit this kinetic energy by slowing down

the wind through the surface of their rotor. The air flow passing through the wind turbine (in kg per

second) is defined by V · S · ρ, where:

• V is the wind speed in meters per second

• S is the surface covered by the blades, forming a circle with an area of π ·R2

• ρ is the air density in kg/m3

Finally, by combining these two formulas [9], the power calculation can be simplified to:

P =
1

2
· ρ · S · V 3

where P represents the power in Watts.

The amount of energy recovered through the rotor is proportional to its surface area, evolving

exponentially depending on the radius of the blades: if the radius doubles, the power is multiplied by

4. It is also proportional to the wind speed cubed, which implies that if the wind speed doubles, the

power is multiplied by 8. Hence, the importance of placing wind turbines in windy sites.

We know that the air density depends on temperature, humidity, and atmospheric pressure. De-

pending on these parameters, variations of 20% in air density and therefore in wind power can be
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obtained. For example, at sea level, at -10°C, one cubic meter of air will weigh 1.341 kg, while at 30°C,

it will weigh only 1.164 kg. Therefore, we considered an average value of 1.2 kg/m3. We evaluated the

installation of an average wind turbine with a radius of 40 meters, which represents a surface covered

by the blades of approximately 5,000 m2.

The following map illustrates the total annual power at each point in France. It was obtained by

summing the daily power obtained by applying the formula to the daily wind speed forecasts for the

year 2022.

Figure 20: Map of 2022 predictions of total annual power (in W)

The results obtained are similar to those illustrating wind speed: the power of the wind turbines

is, on average, higher in the Northwest and Southeast regions. We restricted the possible locations

for the installation of wind turbines to points where the total annual power exceeds 60 MWh, which

corresponds to the power at the 3rd quartile.

Figure 21: Map of Locations with Power > 60 MWh
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6.5 Energy Demand by French Municipality

Wind turbines should be positioned as close as possible to electricity consumption sources to op-

timize energy distribution and minimize losses related to electricity transmission and the need for

storage. That’s why we are now focusing on annual electricity consumption per municipality. Our

approach is to install wind turbines closer to municipalities with high energy demand. To do this, we

used a database from the ORE & Electricity and Gas Network Managers Agency [2] which lists annual

consumption per municipality from 2011 to 2021. We calculated the average annual consumption over

these 11 years to target the most energy-consuming municipalities. Subsequently, we focused on the

top 1% of municipalities with the highest electricity consumption (over 200,000 MWh per year), thus

grouping 340 municipalities.

Figure 22: Map of Locations with Power > 60 MWh (in red) and Communes with Highest Consumption
(in blue)
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It is important to note that energy demand is uniformly distributed throughout the French territory.

Therefore, to avoid losses related to energy transport, it is necessary to judiciously distribute the

locations of wind turbines across the entire territory. To do so, we developed an algorithm to select the

top 10 locations that minimize the cumulative distance between high-energy-demand cities and wind

turbines. We used the scipy.spatial library to calculate the distance matrix between the geographical

coordinates of the blue points (representing high-energy-demand cities) and the red points (potential

locations for wind turbines). The issue with this method is that it is difficult to test all possible

combinations of 10 wind turbines:

C(473, 10) =
473!

10!(473− 10)!

Therefore, we restricted our possibilities to 1,000,000 random combinations. Ultimately, the top 10

locations for wind turbines are illustrated in the figure below.

Figure 23: Best Locations for Wind Turbines

These locations were selected taking into account several essential criteria. Firstly, wind power was

rigorously evaluated, ensuring energy production exceeding 60 MWh. Additionally, to respect nearby

residences, each location is situated at a safe distance of more than 20 kilometers from major cities

(cities with more than 10,000 inhabitants). Finally, these locations optimize energy distribution by

considering the energy demand of municipalities. They are positioned to minimize distances between

cities with high energy demand and wind turbines. This approach allowed for reconciling energy

efficiency, local environmental respect, and response to regional energy needs.
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7 Conclusion

Overall, in our analysis, we saw the evolution at regional and national levels of wind turbine

capacity. We noticed two different trends. First, regarding wind power generation, we observed

fluctuations, emphasizing the seasonal and cyclical nature of wind energy displaying that more energy

is produced in winter. Second, there is an overall increasing trend over the years, mirroring the capacity

analysis where we saw that more and more wind turbines have been installed over the years.

Then, to determine the most promising sites, we sought to predict the potential energy generated

by the wind farm based on its location. However, to do so, we first needed to make wind speed

predictions across France. We thus explored various models such as kriging, linear regression, and an

XGBoost model. The results obtained with linear regression were not convincing. Although Kriging

produced promising results for monthly predictions, we ultimately opted for the XGBoost model due

to its superior performance in daily predictions. This allowed us to establish an initial list of potential

locations for wind farm deployment. These locations were selected by ensuring sufficient wind stability

and power to ensure the operation of wind farms.

Our study then narrowed down to locations close enough to urban areas to avoid electrical energy

losses associated with transportation. However, we made sure not to place them too close to urban

areas to avoid noise and visual disturbances for residents. Thus, we identified 10 potential positions:

the proposed sites often being located near the coastal areas. Near the Mediterranean coasts, we

found two locations in the Occitanie region, and two others located in the Provence-Alpes-Côte d’Azur

region. Near the Atlantic Coast, we found three locations: one in Brittany, one in Pays de la Loire,

and one further south in Nouvelle-Aquitaine. Two additional locations were positioned at the north of

the Île-de-France region.

However, one crucial consideration is that wind forecasting is tied to frequent variations in the

atmosphere. Due to these changes, the wind forecasting model heavily relies on the accuracy of available

atmospheric data. The accuracy of our predictions could be improved by continuously integrating

additional daily data. This will better anticipate short-term changes, thus making predictions more

reliable and suitable for the near future.

This study provides a good foundation and starting point for future studies, offering opportunities

to refine the prediction model and stay up to date on what is happening with wind energy. This is

important for France’s goal of achieving carbon neutrality by 2050 and sustainable energy practices.
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Appendices

Appendix 1: Variables of the SYNOP dataset

Variable Description
ID OMM station Identification code for the station

Date Date of observation
Pression au niveau mer Sea level pressure

Variation de pression en 3 heures Pressure change in the last 3 hours
Type de tendance barométrique Type of barometric tendency
Direction du vent moyen 10 mn Average wind direction over 10 minutes
Vitesse du vent moyen 10 mn Average wind speed over 10 minutes

Température Temperature
Point de rosée Dew point

Humidité Humidity
Visibilité horizontale Horizontal visibility

Temps présent Present weather
Temps passé 1 Past weather 1
Temps passé 2 Past weather 2

Nebulosité totale Total cloud cover
Nébulosité des nuages de l’étage inférieur Cloud cover of low-level clouds

Hauteur de la base des nuages de l’étage inférieur Height of base of low-level clouds
Type des nuages de l’étage inférieur Type of low-level clouds
Type des nuages de l’étage moyen Type of mid-level clouds

Type des nuages de l’étage supérieur Type of high-level clouds
Pression station Station pressure

Niveau barométrique Barometric altitude
Géopotentiel Geopotential

Variation de pression en 24 heures Pressure change in the last 24 hours
Température minimale sur 12 heures Minimum temperature over 12 hours
Température minimale sur 24 heures Minimum temperature over 24 hours
Température maximale sur 12 heures Maximum temperature over 12 hours
Température maximale sur 24 heures Maximum temperature over 24 hours

Température minimale du sol sur 12 heures Minimum ground temperature over 12 hours
Méthode de mesure Température du thermomètre mouillé Method of measuring wet-bulb temperature

Température du thermomètre mouillé Wet-bulb temperature
Rafale sur les 10 dernières minutes Wind gusts in the last 10 minutes

Rafales sur une période Wind gusts over a period
Période de mesure de la rafale Period of wind gust measurement

État du sol Ground state
Hauteur totale de la couche de neige, glace, autre au sol Total height of snow, ice, or other on the ground

Hauteur de la neige fraîche Height of fresh snow
Période de mesure de la neige fraîche Period of fresh snow measurement
Précipitations dans la dernière heure Precipitation in the last hour

Précipitations dans les 3 dernières heures Precipitation in the last 3 hours
Précipitations dans les 6 dernières heures Precipitation in the last 6 hours
Précipitations dans les 12 dernières heures Precipitation in the last 12 hours
Précipitations dans les 24 dernières heures Precipitation in the last 24 hours

Phénomène spécial 1 Special phenomenon 1
Phénomène spécial 2 Special phenomenon 2
Phénomène spécial 3 Special phenomenon 3
Phénomène spécial 4 Special phenomenon 4

Nébulosité couche nuageuse 1 Cloud cover layer 1
Type nuage 1 Cloud type 1

Hauteur de base 1 Base height 1
Nébulosité couche nuageuse 2 Cloud cover layer 2

Type nuage 2 Cloud type 2
Hauteur de base 2 Base height 2
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Variable Description
Nébulosité couche nuageuse 3 Cloud cover layer 3

Type nuage 3 Cloud type 3
Hauteur de base 3 Base height 3

Nébulosité couche nuageuse 4 Cloud cover layer 4
Type nuage 4 Cloud type 4

Hauteur de base 4 Base height 4
Coordonnées Coordinates

Nom Name
Type de tendance barométrique.1 Type of barometric tendency 1

Temps passé 1.1 Past weather 1.1
Temps présent.1 Present weather 1
Température (°C) Temperature (°C)

Température minimale sur 12 heures (°C) Minimum temperature over 12 hours (°C)
Température minimale sur 24 heures (°C) Minimum temperature over 24 hours (°C)
Température maximale sur 12 heures (°C) Maximum temperature over 12 hours (°C)
Température maximale sur 24 heures (°C) Maximum temperature over 24 hours (°C)

Température minimale du sol sur 12 heures (en °C) Minimum ground temperature over 12 hours (in °C)
Latitude Latitude

Longitude Longitude
Altitude Altitude

communes (name) Name of the locality
communes (code) Code of the locality

EPCI (name) Name of the Public Establishment of Inter-Municipal Cooperation
EPCI (code) Code of the Public Establishment of Inter-Municipal Cooperation

department (name) Name of the department
department (code) Code of the department

region (name) Name of the region
region (code) Code of the region

mois_de_lannee Month of the year
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Appendix 2: Presentation of the different codes

• The "Analysis of Wind Turbines in France" script contains the data analysis of the Wind Turbines

in France. It includes several key steps, from cleaning the input data to the detailed analysis

and all the graphs.

• The "ML prediction" script encompasses the code dedicated to using the XGBoost algorithm

for making predictions. It includes several key steps, from cleaning the input data required for

model training, to creating the XGBoost model itself, formatting the database to be predicted,

and making predictions.

• The "energy demand" script is designed to determine the optimal locations for wind turbines

based on energy needs. To use it, you need a database listing cities with high energy consumption,

as well as a database of potential wind turbine locations. The algorithm relies on distance

optimization, seeking to identify the 10 best locations for wind turbines to meet specific energy

demand.

• The "LinearRegression" script uses SYNOP data to create a linear regression where the depen-

dent variable is wind speed and the independent variables are altitude, longitude, latitude, and

indicators for year, month, day, and time of measurement. This code also creates the map with

SYNOP station positions.

• The "Maps" script is designed to visualize potential wind turbine locations in France using the

GeoPandas library. It starts with the grid plot, then removes major cities before placing wind

turbines based on wind speed and annual commune consumption.

• The "KrigingGrid" script generates a grid covering the entire France. The user can determine

the size of the grid cells. The number of generated points is automatically calculated. In this

notebook, you will also find the necessary codes to obtain wind speed prediction for a given

geographical location using ordinary kriging as well as kriging with regression.
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Appendix 3: Results of the linear regression

coef std err t P> |t| [0.025 0.975]

const 3.2995 0.084 39.470 0.000 3.136 3.463

month_2 0.3012 0.018 16.573 0.000 0.266 0.337

month_3 0.2675 0.018 14.861 0.000 0.232 0.303

month_4 -0.0012 0.032 -0.038 0.970 -0.065 0.062

month_5 -0.0743 0.032 -2.296 0.022 -0.138 -0.011

month_6 -0.4094 0.032 -12.614 0.000 -0.473 -0.346

month_7 -0.4024 0.032 -12.422 0.000 -0.466 -0.339

month_8 -0.4703 0.032 -14.525 0.000 -0.534 -0.407

month_9 -0.4359 0.032 -13.429 0.000 -0.500 -0.372

month_10 -0.0265 0.030 -0.889 0.374 -0.085 0.032

month_11 -0.3289 0.018 -18.385 0.000 -0.364 -0.294

month_12 0.0663 0.018 3.743 0.000 0.032 0.101

year_2019 0.1786 0.012 15.496 0.000 0.156 0.201

year_2020 0.2427 0.012 21.072 0.000 0.220 0.265

year_2021 0.0489 0.012 4.235 0.000 0.026 0.071

year_2022 0.0105 0.012 0.909 0.363 -0.012 0.033

year_2023 1.2006 0.156 7.675 0.000 0.894 1.507

day_2 0.0259 0.028 0.912 0.362 -0.030 0.082

day_3 -0.0753 0.028 -2.648 0.008 -0.131 -0.020

day_4 -0.0395 0.028 -1.389 0.165 -0.095 0.016

day_5 -0.0880 0.028 -3.094 0.002 -0.144 -0.032

day_6 -0.0891 0.028 -3.140 0.002 -0.145 -0.033

day_7 -0.0108 0.028 -0.379 0.705 -0.066 0.045

day_8 -0.1983 0.028 -6.978 0.000 -0.254 -0.143

day_9 -0.0081 0.028 -0.286 0.775 -0.064 0.048

day_10 -0.0079 0.028 -0.277 0.782 -0.064 0.048

day_11 -0.1168 0.028 -4.111 0.000 -0.173 -0.061

day_12 -0.2061 0.028 -7.263 0.000 -0.262 -0.150

day_13 0.0576 0.028 2.023 0.043 0.002 0.113

day_14 0.0170 0.028 0.598 0.550 -0.039 0.073
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coef std err t P> |t| [0.025 0.975]

day_15 -0.0125 0.028 -0.442 0.659 -0.068 0.043

day_16 -0.2348 0.028 -8.250 0.000 -0.291 -0.179

day_17 -0.1345 0.028 -4.738 0.000 -0.190 -0.079

day_18 -0.2539 0.028 -8.924 0.000 -0.310 -0.198

day_19 -0.2162 0.028 -7.612 0.000 -0.272 -0.161

day_20 -0.0272 0.028 -0.957 0.339 -0.083 0.028

day_21 -0.0504 0.028 -1.776 0.076 -0.106 0.005

day_22 -0.1307 0.028 -4.594 0.000 -0.187 -0.075

day_23 -0.2259 0.028 -7.952 0.000 -0.282 -0.170

day_24 -0.2433 0.028 -8.556 0.000 -0.299 -0.188

day_25 -0.2138 0.028 -7.517 0.000 -0.270 -0.158

day_26 -0.1490 0.028 -5.241 0.000 -0.205 -0.093

day_27 0.0372 0.028 1.309 0.190 -0.019 0.093

day_28 0.1291 0.028 4.537 0.000 0.073 0.185

day_29 0.0227 0.029 0.783 0.434 -0.034 0.079

day_30 -0.2892 0.029 -9.954 0.000 -0.346 -0.232

day_31 -0.2032 0.033 -6.111 0.000 -0.268 -0.138

hour_02 -0.5876 0.034 -17.488 0.000 -0.653 -0.522

hour_04 -0.0365 0.023 -1.606 0.108 -0.081 0.008

hour_05 -0.7144 0.034 -21.311 0.000 -0.780 -0.649

hour_07 -0.0045 0.023 -0.197 0.844 -0.049 0.040

hour_08 -0.6625 0.034 -19.766 0.000 -0.728 -0.597

hour_10 0.3144 0.023 13.840 0.000 0.270 0.359

hour_11 0.1620 0.034 4.831 0.000 0.096 0.228

hour_13 1.0062 0.023 44.326 0.000 0.962 1.051

hour_14 0.8525 0.034 25.424 0.000 0.787 0.918

hour_16 0.9651 0.023 42.545 0.000 0.921 1.010

hour_17 1.0409 0.034 31.059 0.000 0.975 1.107

hour_19 0.2279 0.023 10.050 0.000 0.183 0.272

hour_20 0.3793 0.034 11.319 0.000 0.314 0.445

hour_22 0.0939 0.023 4.141 0.000 0.049 0.138
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coef std err t P> |t| [0.025 0.975]

hour_23 -0.4163 0.034 -12.412 0.000 -0.482 -0.351

latitude 0.0193 0.002 11.600 0.000 0.016 0.023

longitude -0.0716 0.001 -57.402 0.000 -0.074 -0.069

altitude -0.0016 1.87e-05 -84.674 0.000 -0.002 -0.002
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Appendix 4: Monthly Wind Speed Predictions for 2022

Figure 24: January 2022 Wind Speed
Prediction

Figure 25: February 2022 Wind Speed
Prediction

Figure 26: March 2022 Wind Speed Pre-
diction

Figure 27: April 2022 Wind Speed Pre-
diction

Figure 28: May 2022 Wind Speed Pre-
diction

Figure 29: June 2022 Wind Speed Pre-
diction
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Figure 30: July 2022 Wind Speed Pre-
diction

Figure 31: August 2022 Wind Speed Pre-
diction

Figure 32: September 2022 Wind Speed
Prediction

Figure 33: October 2022 Wind Speed
Prediction

Figure 34: November 2022 Wind Speed
Prediction

Figure 35: December 2022 Wind Speed
Prediction
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